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Goal

Sub-second processing of HL-LHC hit data into:

• Seeds (i.e. triplets) for further processing with traditional 

techniques, AND/OR

• Tracks, where each hit is assigned to exactly one track
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The Current Pipeline

Raw hit data 

embedded

Filter likely, 

adjacent 

doublets

Train/classify 

doublets in 

GNN

Filter, convert 

to triplets

Train/classify 

tripets in 

GNN Apply cut 

for seeds

DBSCAN 

for track 

labels
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Dataset

• “TrackML Kaggle 
Competition” dataset

• Generated by simulation
• 8000 collisions to train on
• Each collision has up to 

100,000 hits of around 
10,000 particles
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Dataset

• Ideal final result is a 
“TrackML score” 

𝑆 ∈ 0,1
• All hits belonging to same 

track labelled with same 
unique label ⇒ 𝑆 = 1

• We use the barrel as a 
test case, and ignore 
noise
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Embedding + MLP Construction

• Won’t give any detail (Nick’s talk next on embeddings)

• Generally:

1. For each hit in event, embed features (co-ordinates, cell direction data, etc.) into N-

dimensional space

2. Associate hits from same tracks as close in N-dimensional distance

3. Score each hit within embedding neighbourhood against the “seed” hit at centre

4. Filter by score, to create a set of doublets for the neighbourhood

5. All doublets in event generate a graph, 

converted to a directed graph (by ordering layers)
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Segmentation

Hard cut One-directional soft cut Bi-directional soft cut

A full graph from the embedding does not fit on a single GPU.
Therefore the event graphs are segmented, according to how 
large the GNN model is expected to be. 
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Previous ML Approaches

• Tracks as images (CNN)

• Tracks as sequences

of points (LSTM)

8
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Graph Neural Network for Edge Classification

Classify edges

with score 

between [0,1]

score > cut: true

score < cut: fake
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Passing information around the graph gives it learning power

• Can make a node 
“aware” of its neighbours 
by concatenating the 
neighbouring hidden 
features

• Iterating this 
neighbourhood learning 
passes information around 
the graph

• Can be considered a 
generalisation of a flat 
CNN convolution
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• Message Passing

• Attention Message Passing

• Attention Message Passing 

with Recursion

GNN Edge prediction architecture

• Attention Message Passing

with Residuals

+ +
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• Message Passing

• Attention Message Passing

• Attention Message Passing 

with Recursion

GNN Edge prediction architecture

• Attention Message Passing

with Residuals

+ + Have found 

best efficiency 

& purity 

performance. 
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Edge attention architecture

• Input node features

• Hidden node features

• Hidden edge features

• Edge score

• Attention aggregation

• New hidden node features

• New hidden edge features

• New edge score

13

x n iterations
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• Input node features

• Hidden node features

• Hidden edge features

• Edge score

• Attention aggregation

• New hidden node features

• New hidden edge features

• New edge score

14
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…
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x n iterations

Edge attention architecture
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• Input node features

• Hidden node features

• Hidden edge features

• Edge score

• Attention aggregation

• New hidden node features

• New hidden edge features

• New edge score

15
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…
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0,1

Edge attention architecture
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• Input node features

• Hidden node features

• Hidden edge features

• Edge score

• Attention aggregation

• New hidden node features

• New hidden edge features

• New edge score

16

x n iterations

0.6

ℎ1
…
ℎ𝑛

0,1

Edge attention architecture
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• Input node features

• Hidden node features

• Hidden edge features

• Edge score

• Attention aggregation

• New hidden node features

• New hidden edge features

• New edge score

17

x n iterations

0.6 0.4 0.1

0.4 0.9 0.1 0.8 0.8

Edge attention architecture
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• Input node features

• Hidden node features

• Hidden edge features

• Edge score

• Attention aggregation

• New hidden node features

• New hidden edge features

• New edge score

18

x n iterations

0.6 0.4

0.4 0.1 0.8

ℎ1 ℎ2

ℎ3 ℎ4 ℎ5

Edge attention architecture
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• Input node features

• Hidden node features

• Hidden edge features

• Edge score

• Attention aggregation

• New hidden node features

• New hidden edge features

• New edge score

19

x n iterations

+

ℎ1 ℎ2

ℎ3
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…
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0

0.6 0.4

0.4 0.1 0.8

Edge prediction architecture
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• Input node features

• Hidden node features

• Hidden edge features

• Edge score

• Attention aggregation

• New hidden node features

• New hidden edge features

• New edge score

20

x n iterations
ℎ1
…
ℎ𝑛

0

ℎ1
…
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1

ℎ1
…
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0,1

0.6

Edge attention architecture
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• Input node features

• Hidden node features

• Hidden edge features

• Edge score

• Attention aggregation

• New hidden node features

• New hidden edge features

• New edge score

21

x n iterations

0.9 0.2 0.1

0.2 0.9 0.3 0.9 0.2

ℎ1
…
ℎ𝑛

0,1

x n iterations

(hyperparameter)

Edge attention architecture
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Doublet GNN Performance

Threshold 0.5 0.8

Accuracy 0.9761 0.9784

Purity 0.9133 0.9694

Efficiency 0.9542 0.9052

Two points to keep in mind
• In the past, graphs have been constructed with a heuristic procedure 

that had much lower efficiency than the learned embedding. This GNN 
is classifying a ∼ 96% efficient doublet dataset

• These metrics are not the end product: we use the scores of the 
doublets to create triplets without losing efficiency
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Why not simply join together our doublet predictions?

23
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Doublet choice can be ambiguous

24
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Not so easy…

so teach the network

how to combine
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But a GNN doesn’t know about “triplets”
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Moving to a “doublet graph” gives us back GNN power

26
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Moving to a “doublet graph” gives us back GNN power

27
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Triplet Propaganda

Threshold 0.5 0.8

Accuracy 0.9761 0.9784

Purity 0.9133 0.9694

Efficiency 

* relative

0.9542 0.9052

Doublet GNN Triplet GNN

Threshold 0.5 0.8

Accuracy 0.9960 0.9957

Purity 0.9854 0.9923

Efficiency

* relative

0.9939 0.9850
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Triplet propaganda

Gold: Unambiguously correct triplet or 

quadruplet

Other colours: False positive/negative

Key:

Silver: Ambiguously correct triplet or quadruplet 

(i.e. edge shared by correct triplet and 

false positive triplet)

Bronze dashed: Correct triplet, but missed 

quadruplet (i.e. edge shared by correct 

triplet and false negative triplet)

Red: Completely false positive triplet

Blue dashed: Completely false negative triplet
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Gold: Unambiguously correct triplet or 

quadruplet

Other colours: False positive/negative

Key:

Silver: Ambiguously correct triplet or quadruplet 

(i.e. edge shared by correct triplet and 

false positive triplet)

Bronze dashed: Correct triplet, but missed 

quadruplet (i.e. edge shared by correct 

triplet and false negative triplet)

Red: Completely false positive triplet

Blue dashed: Completely false negative triplet

Triplet propaganda
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Black: Triplet classifier correctly 

labelled, doublet classifier 

mislabelled

Red: Doublet classifier correctly 

labelled, triplet classifier 

mislabelled

In this graph, triplet classifier

Fixes 389 edges

Worsens 10 edges

Triplet GNN improves 
doublet GNN results
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Seeding: Final Performance

Purity: 99.1% ± 0.07%

Efficiency: 88.6% ± 0.19% - This is objective

Inference time:  ∼ 5 seconds per event per GPU, 

split between:

• ∼ 3 seconds for embedding construction

• ∼ 2 seconds for two GNN steps and processing



BERKELEY LAB 
Office of
Science

33

Seeding: Next Steps

• Direct comparison with ACTS seed generator

• N-plet GNN

• The problem is combinatorically 

increasing graph size                                     

e.g. For TrackML data:

• 𝑂(1,000) tracks, 

• 𝑂(6,000) hits, 

• 𝑂(20,000) doublets, 

• 𝑂(60,000) triplets

• Cut doublet input before triplet 

construction

• Doublet threshold of 0.01 retains 

99% efficiency

• Reduces doublets 𝑂(20,000)→
𝑂 6,000

• We thus have a sustainable process 

to N-plet GNN

⇒
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Track Labelling

GOAL

Given a classified doublet and/or triplet graph,

use edge scores to group likely nodes into tracks

and label with unique identifier.
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DBSCAN on a Graph

• DBSCAN typically calculates a distance metric and clusters based on 
neighbourhood density

• Feed the edge scores 𝑒𝑖𝑗 as a precomputed, sparse, metric matrix, 

with each distance element given by
𝑑𝑖𝑗 = 1 − 𝑒𝑖𝑗

• Fill out sparse matrix to ensure it is diagonal, i.e. undirected. A 
directed graph does not perform well with DBSCAN.
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DBSCAN Performance

• We can construct a “truth graph” 
from TrackML data, where every 
hit is connected to hits of a 
shared track in adjacent layers, 
with a high score (e.g. 0.99), and 
randomly connected to other hits 
with a low score (e.g. 0.01)

• We can randomly mislabel true 
edges to reduce efficiency, or 
mislabel fake edges to reduce 
purity

• We see linear reduction in 
TrackML score against efficiency

• Exponential reduction in TrackML
score against purity
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GNN TrackML Score Performances

• DBSCAN on truth graph

0.989
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GNN TrackML Score Performances

• DBSCAN on truth graph

0.989

• DBSCAN on adjacent-layer 

truth graph

0.957
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GNN TrackML Score Performances

• DBSCAN on truth graph

0.989

• DBSCAN on adjacent-layer 

truth graph

0.957

• Embedding-constructed 

doublet hits

0.935

Loss from embedding 

construction 96% efficiency
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GNN TrackML Score Performances

• DBSCAN on truth graph

0.989

• DBSCAN on adjacent-layer 

truth graph

0.957

• Embedding-constructed 

doublet graph using truth

0.935

• DBSCAN on doublet GNN 

classification

0.815

Loss from embedding 

construction 96% efficiency
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GNN TrackML Score Performances

• Triplet graph constructed from 

doublet graph (truth)

0.846

Loss from embedding 

construction 96% efficiency

Lost doublets
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GNN TrackML Score Performances

• Triplet graph constructed from 

doublet graph (truth)

0.846

• DBSCAN on triplet graph from 

triplet GNN classification

0.815

Loss from embedding 

construction 96% efficiency

Lost doublets
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Missing Doublets

All Hits Missing Doublet Hits

𝜂𝜂

𝜙𝜙
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Missing Doublets

All Hits Missing Doublet Hits

𝜂𝜂

𝜙𝜙

Doublets on 
end of barrel
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Missing Doublets

All Hits Missing Doublet Hits

𝜂𝜂

𝜙𝜙

Doublets on 
edge of 
segments
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Stitching

• Significant speed up from eliminated duplicates on edges of segments

𝜂

𝜙

Pre-clean-up Post-clean-up
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Ignoring Fragmented Tracks

• We throw away all tracks that:

• Only hit one or two different layers in the barrel

• Have more than three hits elsewhere in the detector

E.g. Although most of this track 

is outside the barrel, we keep 

the track to challenge the GNN

𝑧𝑦

𝑥 𝑥



BERKELEY LAB 
Office of
Science

48

Track Labelling: Final-ish Performance

• Triplet graph truth in eta 

range (-2.1, 2.1)

0.912
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Track Labelling: Final-ish Performance

• Triplet graph truth in eta 

range (-2.1, 2.1)

0.912

• DBSCAN on triplet GNN 

classification in eta (-2.1, 2.1)

0.876
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Track Labelling: Final-ish Performance

• Triplet graph truth in eta 

range (-2.1, 2.1)

0.912

• DBSCAN on triplet GNN 

classification in eta (-2.1, 2.1)

0.876

• Triplet graph truth in eta (-2.1, 

2.1) & no fragments

0.925
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Track Labelling: Final-ish Performance

• Triplet graph truth in eta 

range (-2.1, 2.1)

0.912

• DBSCAN on triplet GNN 

classification in eta (-2.1, 2.1)

0.876

• Triplet graph truth in eta (-2.1, 

2.1) & no fragments

0.925

• DBSCAN on triplet GNN in 

eta (-2.1, 2.1) & no fragments

0.888
This is the take-away



BERKELEY LAB 
Office of
Science

52

Track Labelling: Final-ish Performance

• 0.888 TrackML Score in barrel, 
emulating whole detector (no 
punishment for tracks crossing 
detector volumes) recovers almost all 
missing doublets

• This is an early result – two big 
improvement areas are now seen: 

1. Doublet-to-triplet efficiency, and
2. Embedding construction 

efficiency

• Every 1% of efficiency gained ≈
+ 0.015 TrackML score

• Winning score is 0.922…



BERKELEY LAB 
Office of
Science

53

Summary

• Seeding pipeline complete, with good performance

• Need concrete comparison with ACTS for CTD

• Track labelling just beginning, with promising performance

• Many low-hanging-fruit optimisations to try and boost efficiency and speed

• HPO on embedding and GNN

• Mixed-precision in GNN

• Include cell features in GNN

• Some GPU processing with CuPy, but much more could be transferred to work on GPU

• A multitude of different GNN architectures, one may be especially suited to the physics


